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A theory based on a separate account of short-range repulsion and long-range 
attraction between particles is applied to the description of the liquid-gas 
critical point in the classical fluid case. The collective variables method with a 
reference system (RS) is used. Detailed investigation of the properties of RS 
cumulants makes it possible to transform the grand partition function into a 
functional form defined on the effective block lattice. The functional corresponds 
to the partition function of the Ising model in an external field. Then the collec- 
tive variables method is used to calculate the Ising-model partition function in 
the vicinity of the phase transition point, which was developed in our previous 
papers. As a result one can separate reference system and long-range subsystem 
variables, which makes possible the quantitative solution of the liquid-gas 
critical point problem. The equation for the parameters of the critical point is 
obtained, as are explicit expressions for the equation of state both above and 
below T~; the chemical potential of the system is investigated. 

KEY WORDS: Expanded phase space; reference system; partition function; 
liquid-gas critical point; cumulants; Ising model in external field; chemical 
potential isotherm. 

1. INTRODUCTION 

D u r i n g  recent  decades  the  p r o b l e m  of  the l i qu id -gas  cri t ical  po in t  has  been  

a field o f  in tens ive  inves t iga t ion ,  bu t  is still far  f rom c o m p l e t e  solut ion.  

Different  a p p r o a c h e s  t rea t ing  in te rpar t ic le  a t t r ac t i on  as a p e r t u r b a t i o n  

with  respect  to sho r t - r ange  repuls ion  ~ 6 )  have  he lped  to unde r s t and  the 

connec t ions  be tween  the s t ruc ture  o f  the sys tem and  the  cha rac t e r  o f  the 

in te rac t ion  and  to  r ep roduce  a p p r o x i m a t e l y  the expe r imen ta l  data.  The  
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renormalization group method and its combination with computer simula- 
tion has provided the possibility for calculation of the critical exponents and 
allowed the approach to a quantitative description of the thermodynamic 
properties. 

Nevertheless, the derivation of an ab initio theory of the critical point, in 
which the order parameter is introduced in a natural way, and the Ginsburg- 
Landau-Wilson (GLW) functional explicitly related to the microscopic 
properties is obtained, remains an unresolved problem. 

Important ideas concerning the problem were offered in refs. 15-17. In 
particular, in ref. 15 a GLW-type Hamiltonian was formally introduced, its 
connections with a reference system were pointed out, and a scheme for the 
calculation of the partition function was described. However, the authors 
were not engaged in a derivation of explicit expressions for coefficients of 
the Hamiltonian, and hence the calculation of the partition function and of 
the free energy was not their aim. 

The calculation in the renormalization group approach and the 
structure of the GLW Hamiltonian were considered in detail in ref. 16. 
However, the treatment is rather formal concerning calculations of the 
initial values of the GLW Hamiltonian coefficients and their relations with 
microscopic properties of the system. 

An original approach was developed by Parola et al. (see ref. 17 and 
their following papers on the same subject) which in principle leads to the 
derivation of a quantitative theory of a fluid in the vicinity of the critical 
point. The difficulties of this approach consist in the apparent convergence 
near the criticial point of the perturbation series by means of which the dif- 
ferential generator of the reference system hierarchy has been constructed, 
and in cumbersome calculations as well. 

Our method is based on taking account of the long-range attraction 
effects using the collective variables method, while the short-range repul- 
sion is included in the reference system. The long-range attraction is related 
to direct and indirect interactions and results in collective effects, in par- 
ticular in phase transitions and critical behavior. The short-range repulsion 
describes the inpenetrability of particles, removes a formal divergence at 
short distances, and modulates the distribution and dispersion of the fluc- 
tuation processes. Both types of interaction are considered in the expanded 
phase space consisting of a subspace of Cartesian coordinates, in which the 
short-range repulsion is described, and of a subspace of collective variables 
Pk, in which the effects of the long-range attraction are taken into account. 

A transition operator which has the form of an analytic functional 
removes the phase space overflow. 

In our approach, all properties of the structural functions of the 
system used as the reference system (RS) are supposed to be known. In this 
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paper we use the hard-sphere system, but in principle it is possible to use 
another system with known structural and thermodynamic functions; we 
shall consider this case elsewhere. In the present paper we demonstrate how 
knowledge of the general properties of the RS facilitates the actual solution 
of the critical point problem. 

The structure functions of the RS (cumulants) were calculated in our 
previous papers. 127"3~ The expression for the grand partition function was 
obtained in the form of a functional integral in which the coefficients are 
cumulants depending on wave vector. (~4) 

Application of the mathematical techniques of the collective variables 
connected with the fluctuation modes of the number density ~k~  
Zi exp(ikri), where r; are the coordinates of a particle, allows one to reduce 
in the problem of taking into account a long attraction "tail" at long 
distances to the calculation of its influence in a certain finite interval of the 
wave vectors Ikl E [0, B1. 

Let us outline the main results of the paper: 

(a) The dependence of RS cumulants on wave vector in a certain 
interval [k I e [0, B], typical for the Fourier transform of the attractive 
forces, is proved to be rather weak. 

(b) Taking into account the basic properties of pairwise attraction 
potentials allows one to transform the configuration integral into a func- 
tional defined on a certain effective block lattice. In such a representation 
the grand partition function corresponds to that of the Ising model in an 
external field, for which the method of calculation developed in refs. 7-16 
is used here. 

(c) A method of calculation of the partition function at T <  Tc and 
T >  T c by integration over the collective-variable (CV) phase space is 
proposed. The grand partition function is reduced to a single integral over 
the collective variable P0, which is connected with the order parameter. 

(d) It is shown how a definition of the critical point emerges in this 
approach, and its coordinates are calculated. In particular, for the critical 
fraction density we find qc = 0.130443. 

(e) An analysis of an explicit expression for a single integral over Po 
is carried out. The nonanalytic dependence of the Hamiltonian coefficients 
E(po) on temperature is shown, and possibilities for one- or two-phase 
states below the critical point Tc are examined. 

(f) An explicit expression for the chemical potential isotherm is 
obtained, and a density jump is calculated. The boundaries of the transition 
region, density jump region, and thermodynamic instability region are 
determined. 
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Table I. Values of Critical Indexes and Critical 
Ampli tude Ratios for Heat Capacity (A• and 

Magnetic Susceptibi l i ty (.r • for 3D Ising Model 

CV method p6 model.O~ Refs. 11-13 

v 0.637 0.630; 0.638 
0.088 0.110; 0.125 

fl 0.319 0.325; 0.312 
y 1.275 1.241; 1.250 
r/ 0.018" 0.031 

A + / A -  0.675 0.550; 0.48; 0.51 
F + / F  - 9.253 4.8; 5.07 

. p4 model. 

It is clear that universal characteristics such as the critical exponents 
have in this case values in common with the class of Ising-like systems 
because both the liquid-gas critical point and the Ising model belong to the 
same universality class. Detailed calculations of the critical exponents using 
the CV method were performed in refs. 7-10; therefore here we restrict 
ourselves to the presentation of some exponents from these papers (see 
Table I). 

In the present paper we deliberately avoid extensive consideration of 
results connected with the Ising problem. Instead, we call the reader's 
attention to refs. 7 and 8, where this problem was carefully investigated. The 
main points of the present paper are the demonstration of the possibility to 
describe quantitatively the liquid-gas critical point, the development of a 
method for calculating the grand partition function in the vicinity of the 
critical point, and the calculation of an explicit expression for the equation 
of state and chemical potential. With these results, [see (25), (26), and (29) 
at T >  Tc and (46) and (61) at T <  To], one can find other thermodynamic 
characteristics, for example, the heat capacity or entropy. 

2. FUNCTIONAL REPRESENTATION OF THE GRAND 
PARTITION FUNCTION IN THE VICINITY 
OF THE CRITICAL POINT 

Consider a system of N pairwise interacting particles in volume V at 
temperature T. According to the concept of the reference system, we 
express the full pairwise potential of two particles located at points r i and 
rj, Vij= U(l r i - r j l ) ,  as a sum 

U ~ = ~ + ~  o. (I)  
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The main problem of the paper, namely the calculation of the grand 
partition function in the vicinity of the liquid-gas critical point, will be 
solved in the expanded phase space composed of the subspace of Cartesian 
coordinates of the particles r, ..... ru and the collective-variables subspace. 
The behavior of the particles, conditioned by short-range repulsion, is 
described in the coordinate space, and that caused by attraction effects is 
described in the CV subspace. 

The grand partition function 

Z =  N.T exp - f l  Z [~'o+r ] (dr) N 
N = O  i < j = l  

(2) 

where z = exp(- t ip)  (2nmksT) 3m2 is the activity, p denotes the chemical 
potential, fl=(ksT) -l is the inverse temperature, k s is Boltzman.n's 
constant, and m is the mass of the particle, can be represented in the 
f o r m  (14) 

15(0)  ] 1 N PkP--k} J(P) Y.=Eo f exp {Nt/2flpoIfi +- ~ - -~ f l~k  ~(k) (dp) 

(3) 

where p = p  - P o ;  and 

o'o . N  ~ N 

j ( p ) = ~ o ,  u~__o N'Lg-~ f exp J --fl ~. 
i < j = l  

~( Ir,- UI)} J(pr) (dr) u 

is the Jacobian of the transition from Cartesian coordinates to the collective 
variables p. Here 

J(pr) =8(Po-•o)  I-l' ~i(,Ok--fik); 
k~O 

/~k = N-t/2 f ,i(r) e-ikr dr 

_ _  r $ The collective variable Pk--Pk--Pk is related to the real and imaginary 
parts of the Fourier transform of the particle densi ty/~k- .c - Pk - P'~, by 

N 

/~[,. = N-'I2 ~ cos(k'ri) = f g[,, J(pr) (dp) 
i = I  

N 

P~' = N - I / 2  Z sin(k'r,) = f p[, J(pr) (dp) 
i = l  

(dp)=dpo I-I dp~@~ 
k # O  



410 Yukhnovskii et  al.  

In the above, 

SO=~oZ~--~fexPNffi ~" - - p  ~ ~ h ( I r , - r j l ) ( d r )  N 
i .< j= 1 

is the RS grand partition function, which we suppose is known; 
~ ( r ) = ~ = l  5 ( r - r j )  is the density of particles at the point r; ~ ( k ) =  

�9 (r) e -ikr dr is the Fourier transform of the potential ~(r); Po is the 
chemical potential of the reference system; and ~ is the total chemical 
potential. 

Inserting the integral representation for 5-functions in the Jacobian 
and performing the integration over Cartesian coordinates in the expres- 
sion for the Jacobian, we obtain for the grand partition function 

3 = 3 o  exp hNl/2po- ~ a(k) pkP_k + i2rC ~ mkPk--i2rcNI/2~llllCOo 
k 

{ (27t)2 ~ gJl2(k)O.)kO.) k } 
xexp - 2! k 

( -- i2rQ" N_~.,_2)/2 
m ! 

X exp 
m~>3 

(do)) (dp) x F. ~,~(k~ ..... km) a~k<.-a~km (4) 
kl ,-.,kin 

where h = fl[fi + �89 ct(k) = fl(NIV) ~(k); m k is the Fourier-conjugate 
variable to the collective variable Pk; 9J~,,(kl ..... k,,) = (/~k~'" "Pk,,)c is the 
mth-order RS cumulant, which can be expressed in terms of the RS 
correlation functions; (22) and ( ... )c means cumulant average by the RS. 

It is well known that the main features of the behavior of the system 
at the critical point are connected with the long-range fluctuations of the 
density. 

We classify the density fluctuation modes into short-range and long- 
range modes based on the properties of ~(k)-- the Fourier transform of the 
potential ~(r), 

O(r) = 1  ~., $(k) e -'k" 
V k  

The potential ~(k) is negative at 0 ~< Ikl ~< B, ~(B) = 0, and at k > B it may 
be positive or oscillating and vanishes at [k[--, oo (see Fig. 1 ). In this paper 
we use as an attractive potential r the negative branch of the Morse 
potential [see (15)]. As one can see from Fig. 1, the value of [~(k)[ at 
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Fig. 1. Plots of (a) second cumulants ~l12(k) and (b) the Fourier transform ~(k)  of the 
attractive part of the interaction potential. The point B separates long- and short-wave 
fluctuations of the density. Curves 1-4 correspond to values r/=0.05, 0.1, 0.15, and 0.2, 
respectively. 

k >  B is small. This allows us to describe the short-wave fluctuations, 
corresponding to co k and Pk for Ikl >B,  with a Gaussian basic density 
measure. The variables co k and Pk for Ikl ~< B are connected with long-wave 
fluctuations. The Gaussian approximation cannot be used here because it 
leads to a divergence in the vicinity of the critical point. This is the main 
difficulty in the calculation of the integral (4). 

After integration over the short-wave modes of the density fluctuation 
o9 k and Pk, Ikl > B, we find the following expression for the grand partition 
function: 

===o=~=L (5) 

Here 3L is a funcional of the long-wave fluctuations and will be described 
below. 3~ is the part of the grand partition function connected with 
the short-wave density fluctuations distributed according to the Gaussian 
law. 

The expression for 3 c  and a way of calculating it are given in Appendix A. 
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Integration over co k and Pk, [k[ >B,  leads to renormalization of the 
cumulants, the new values of which are denoted below as ~3~, (kl ..... k,); for 
example, 

1 
~l~2(k) ~9~2(k) +~-  ~ ~. 9 J t4 (k , -k ,k , , - -k , ) ( cok , co_k ,>  + ... (6) 

ki,lkxl> a 

Expressions (A4) and (6) describe the contribution of the short-wave 
density fluctuations. We have evaluated its value in the case of argon, 
taking for the interaction between particles the Morse potential (see 
below). For the "long-range" attraction its negative branch was employed. 

In particular, at the critical point at k = 0 we obtain from expression 
(6) in zeroth approximation 

9~2(0) ~ 9X2(0)( 1 - 0.271 x 10 -6) (6') 

In this way, the influence of short-wave fluctuations is negligible here. 
This is conditioned by the behavior of 0c(k) at k > B and by the small value 
of  ~0~4(0 , 0, k, - k ) ~ 0 . 1 .  

Taking into account the estimate (6'), in the zeroth approximation we 
may neglect the renormalization of cumulants 932,, in the region [k,.[ ~<B 
due to integration over the variables Pk and co k, Ikl > B, setting ~!1,, ~ 93/,,. 

The investigation of the cumulants is the most important part of the 
preliminary discussion of the initial form of the partition function. In 
Fig. la, the curves for ~D22(k) are plotted for values of the fraction density 
q = (n /6) (N/V)  0 "3. The RS structure factor 93~2(k) was calculated in ref. 25. 
An essential property of 9J12(k ) is the way in which it depends on k at 
small k, namely, the presence of an almost horizontal "shoulder" of the 
curve 9Xz(k) (see Fig. 1). The length of the shoulder depends on q. As one 
can see from Fig. 1, the region 0 ~< Ik[ ~ B of negative values of ~(k) almost 
coincides with the "shoulder" region. Using Schofield's equation for the 
correlation functions, (28~ expressions for the cumulants ~3(k,  - k ,  0) and 
9X4(k, - k ,  0, 0) with a reduced dependence on wave vector were obtained 
in ref. 27 (see also Appendix B). 

Plots of 9J~3(k,-k,  0) and 9314(k,-k, 0, 0) are given in Fig. 2. One 
can see that a weak dependence on k at small k is common to all the 
cumulants we have considered here. This allows us to replace the functions 
92il,(kt,..., k,,) at Ik;I ,<B by a constant value 931,,(0,..., 0). 

Values of 93/2(0) through fl~/5(0) are listed in Table II. 
The main part of the partition function in view of the present con- 

sideration is 3L, for which we found in refs. 14 and 26 the expression 

= f ( 1  + D 4 +  �9 ) W4(p;co)(dog)NB(dp) 'v" (7) 
d 
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Dependence of cumulants S0/3(k,-k, 0) and ~ 4 ( k , - k ,  0,0) on k. Curves 1-4 
correspond to values r /= 0.05, 0.I, 0.15, and 0.2, respectively. 

H e r e  

D4 = ~ (--2br)" N l  . . . .  /2 (8 )  m !  Y" 9Jim(0) ogk' " " " ogk" 
m > 4  k l , . . . . k m  

I k i l  ~< B 

W4(p; o9) is a b a s i c  m e a s u r e  d e n s i t y  in t h e  v ic in i ty  o f  t he  cr i t ica l  p o i n t .  

Table II. Dependence on the Fraction Density of 
Cumulants ~ , , ( k  1 . . . . .  k, , )  at Zero Values 

of Arguments k I 

~/ ~012(0) ~3(0)  ~4(0) $15(0) 

0.05 0.673 0.275 7.81 x 10 -2 -0.18 x 10-5 
0.10 0.456 4.61 • 10-2 -8.66 x 10 -2 2.04 x 10-2 
0.15 0.309 - 1.59 x 10 -2 -2.83 x 10-2 2.74 x l0 -2 
0.20 0 .208 -2.49 x 10 -2 -3.96 • 10 -2  9.64x 10-3 
0.25 0.141 - 1 . 9 8 x  10 -2  --2.16x 10 -3 1.81 x l0 -~ 
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It was shown in ref. 19 that 

1 ~ o~(k) PkP-U +i2rc ~ (DkPk W4(p; co) = exp hN I/2po - ~ u. Ikl < s u. Ikl ~ s 

+ ~ (-i27~)'Nl-'/z } 
n = l  F/! ~ ~fJ]" t (0)  6 kl + " " " + k " ( D k l  ' " ' (D kn 

kl ,,.., kn 
Ikil ~<B ( 9 )  

We keep in the exponent of the function W4(p; o9) only terms up to the 
fourth power in the variable (Dk. Following the above arguments, we have 
neglected in (8) and (9) the dependence of 9~,,(kt ,..., k,,) on ki, as well as 
the renormalization of 9Jl,, due to integration over dpu, d(D u, [k[ > B, and 
replaced ~l~,(kl ..... k,,) for ki<~B by 9J/,,(0). 

It is essential that all odd cumulants 9J/i, 93/3, 9315,.. in (7) possess the 
factor i. The convergence of the integrals in (7) is ensured by the term 
containing ~J14. 

Then the shift 

iN 1/29J~3( 0 ) p 
CO O = CO 0 

2 7 ~ 9 J ~ 4 ( 0  ) (10) 

where 

9"J~, =N '/a (1 + 9J/2(0) 9J/3(0) " ~l](0) "~ 
l~4(O)l + ~ , )  

transforms W4 into a form containing terms 9~t, ~2, and 9J/4 only. Such 
an expression for W4 corresponds to the Ising model in an external field. 
In fact, at this point, the critical point problem is basically solved. The CV 
method was earlier applied to the Ising problem. (7"8) Having introduced the 
collective variables related to the Fourier transforms of the spin density, 
one obtains after summation over all spin configurations an expression for 
the partition function which has just the same structure as (4), but instead 
of the cumulants ~ l ,  9~2, 9Y/4 one has 0, 1, - 2 .  The value h in (9) 
corresponds to an external field in the case of the Ising model. Integration 
over (Dk in (7) transforms it [see (13)] to a known form, which was 
investigated, for example, in ref. 29. Notice that application of functional 
methods to the Ising problem leads to a density measure in the expression 
for the free energy similar to (9). 
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After integration over Pk, Ok, Ikl > B, the expression for •L contains 
only sums over k with Ikl ~< B. We can consider a set of k vectors, Ikl ~< B, 
as corresponding to sites of a reciprocal lattice conjugated to a certain 
block lattice { r/} with No block sites in a periodicity volume V: 

. ( B t r )  3 
Nn=lv ~ (11) 

One may consider the quantity B as the size of the first Brillouin zone of 
this block lattice. 

Setting for the Kronecker symbol 

1 _ ikr 

B rt 

we obtain for W4 

I .~ oc(k) PkP-k + i2zc 
W4(p; c~ = exp /'t'P~ --2 k. Ikl < B k, Ikl ~< B 

(27~) 2 
-- i2~9~I CO0-- ~ ~2(0)  E (-'0 k CO - k 

k, lkl~< B 

-- (2n)~4 1 9 ~ 4 ( 0 ) 1 4 !  NB ~ ( ' 0 k l  " " " ( ' D k ' I t ~ k l  + " '"  + k4} 
kh..., k4 
Ikil ~< 8 

O-)kp k 

(12) 

with 

~i(o) 
0 1 2 ( 0 )  = ~ 2 ( 0 )  - 

2 19J~4(0)I ' 
~ 4 ( 0 )  = N B  9'J~4(0 ) 

Therefore, we have reduced the problem of calculating the partition 
function of the fluid to that of the Ising-like system. 

Integrating W4 over all co k, we finally obtain the following form for 
the grand partition function: 

~ ' - -  ~' ~ ( I )Z(~J~  ~ 4 ) f e x p  {/t*po - 1  
~ - - ~ 0 ~ G  ~ 2, 2 k, lkl~< B 

} 4! ~ P k ' ' ' ' P k 4 O k t + ' " + a  (dP)N" 
hi...., k4 
Ikil ~< B 

d2(k) PkP-k 

(13) 
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Here 

/z* = N1/2h - a l  ; 

a2 = (12) 1/21~I~4(0) [-1/2 K(~) 

al =Nl/2 ~3(0-------~) +oc(0) ~1/1; 
1~4(0)1 

a4=619SI14(0)1-1L(~); d 2 ( k ) = a 2  +cx(k); 

L(() = 6K2(~ ") + 4~ I/2K(~) -- 1; 

1{ / 144~ '~ TM 

K ( ( )  = ~I/2[ K3/4(~)/KI/4(~) - 1 ] 

3~,~(o) 
i F j(o)t 

KI/4(~) and K3/4(~) are Bessel functions of imaginary argument; we have 

[ ~(0) '~-,(0) ~g(0) ~(0) ] 
~)=~oexp - N  1~4(o)1 ~- 2~m](o) +8 I~,(o)l~J 

1 ~Y~+u*~Y~,} +~o~(0) 

To finish with the introduction, let us now touch on the question of the 
separation of the RS potential ~(r) from the total potential V ( r ) =  
r + ~(r).  In the present paper we start with the Morse potential 

VmIr) = t[  e-- 2(r--ro)/a - -  2e--(r--ro)/a] 

with parameters 0q t, and ro .~2~ The potential Vm possesses two branches, 
a positive one at r < r o - ~ In 2 and a negative one for the remaining r. 

The negative branch will be described by CV. Instead of the positive 
branch, we shall use an appropriate hard-sphere system and choose the 
diameter of the spheres to provide a coincidence of the binary correlation 
functions of the hard spheres with those of the system with the positive 
branch only. So one can calculate the hard-sphere diameter a in a way 
similar to that developed by Weeks et al. (~) 

The equation of state will include a part which corresponds to the 
hard-sphere system pressure, for which we adopt the Carnahan-Starling 
equationC2~) 

Po V 1 + r /+ r /2 -  q 3 
N k T  = z ~  = (1 - r / )  3 (14) 
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Table III. Coeff icients a l ,  aa, a3, a4 of the Effective LGW 
Hamil tonian and Coeff icient a2 of the Hamiltonian wi th  

Reduced a3 term ~ 

al a2 a3 a4 ~2 

0.04 -0.1959 0.9405 -0.4542 0.5870 0.7647 
0.06 -0.4616 0.9974 -0.3160 0.4133 0.8766 
0.08 -0.6355 1 . 0 1 3 2  -0.2196 0.2756 0.9257 
0.10 -0.7660 1 . 0 1 1 3  -0.1350 0.1570 0.9532 
0.12 -0.8681 1 . 0 0 1 0  -0.0698 0.0796 0.9704 
0.14 -0.9518 0.9902 -0.0271 0.0384 0.9807 
0.16 -1.0237 0 . 9 8 2 5  -0.0024 0.0183 0.9824 
0.18 --1.0883 0.9784 0.0103 0.0087 0.9723 
0.20 - 1.1479 0.9770 0.0158 0.0038 0.9446 

a a = 3.2 A, B = 0.648 A -l .  

Here z o is the compressibility factor of the RS, and rl = (rc/6)(N/V) a 3. The 
diameter a is a function dependent on both density and temperature. We 
will neglect this dependence, taking for a its value at the critical point: 
a = a(r/c, To). 

Equation (14) can be utilized to calculate the chemical potential/t o of 
the RS. Thus, in our further investigation/z o is taken to be known. 

For the remaining branch of the interaction ~(r) we have 

f O, 
�9 (r) = 

V,,(r), 

Its Fourier transform ~(k) 

r <<. r* 
(15) 

r > r *  

~(k) = f ~(r) e-ikr dr 

ô~3 47[ ~-(ro-r*)/~ ~ e(r~ 
= ~  --k--e ( 4  q_k20c 2 

4kr* "~ kr*] x I ( ~ 4  4-k2~ ( k r * + 4 + k 2 ~ 2  j �9 4 + k2oc2J sin kr* + cos 

1 + k2o~ 2 + 1 + k2o~2J sin kr* 

+ (kr*  1 + k2o~2,1 (16) 
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is plotted in Fig. lb. The point B of its intersection with the k axis 
separates short- and long-wave density fluctuations. 

A calculation of the coefficients of the function W4(p, o9) of Eq. (12), 
which contains in the exponent an expression of GLW Hamiltonian type, 
can be performed without making use of the substitution (10). In such a 
case it will contain all terms of odd and even order in Pk" Values of the first 
four coefficients al-a 4 are presented in Table III. 

For the partition function ~L we obtain a functional with explicitly 
defined coefficients. 

3. CALCULATION OF THE PARTIT ION FUNCTION IN THE 
VICINITY OF THE CRITICAL POINT 

Thus, we have transformed the expression for the partition function to 
the form (13) corresponding to the Ising model in an external field. This 
allows us to use the method of calculating the partition function using 
integration over the layers of the phase space (PS) developed in refs. 7-10. 
Expression 13 contains Ns integrals over Pk(P~,, P~), 0 <<. [k[ ~<B. We will 
perform a layerwise integration in the PS. Division of the PS into layers is 
performed as follows. 

In the interval [0, B] we choose points Bl=B/s,  B2=B~/s ..... B,,= 
B,_t/s.  Variables Pk(P~,,P~) for which the subscript k satisfies the 
condition B~ < Ikl <~ B belong to the first layer. For the second layer one 
has B2< [kl~<Bl, B2=B/s2; for the nth layer one has B ,< l k ]  ~<B,_~, 
B , = B / s " , B , _ I = B / s  "-l .  

To factorize the integrals, we replace the Fourier transform of the 
attraction potential ~(k) by its average value in each layer. Hence, instead 
of ~(k) we will have a sequence of values: 

~(k) ~ ~(B, ,  B), B, < Ikl ~<B 

�9 (B2, B1), B2< ]k[ ~<BI 

~(B, ,  B,,_ 1), B , <  Ikl ~<B,_I 

Here ~(B1, B) is the average value of ~(k) over the interval (Bi B). 
The method of averaging is not essential. For example, we take 
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o r  

[ O(B,,) + r  ~)] 
r  B,,_ ~) - 

2 

for the geometric and arithmetric averages, respectively. 
Generally, the division parameter s > 1 can take arbitrary values, but 

as a consequence of the approximations used in the calculations, the 
highest precision of the results is achieved at some optimal value s = s* in 
each case. For example, if the quartic density measure approximation is 
applied, keeping in the exponent of (13) terms up to the fourth order ofpk, 
the optimal value is s*=  3.58, which provides the coefficient d~)(0) equal 
to zero at the fixed point: d(2")(0)= d* = 0. 

After the integration over variables Pk of the first layer the number of 
variables under the integral will decrease from NB to N~ = NBs-3; and after 
n layers we have N . = N n s  -3". The structure of the function under the 
integral remains unchanged, but instead of initial coefficients a2, a 4 we 
have in turn a(~ 1), a~l); a(, 2), ai2);...; a(, "), a(,"); .... 

After n steps of integration one obtains 

J- '~= ' -~0* '~(Gl)Z(~2,  ~]~4) QoQI "" Q. - ,  

* Y /'~/'-k 
x f e x p  p pO--~k, lkl<S 

1 
d(2")( k ) 

4!N,, y" Pk'" 'P~C~k'+'+a (dP)~r" (17) 
kl ,..., k4 

Ikll ~< B. 

where Qo"" Q . - I  is the result of integration over the n first layers. We 
have 

ao = [Q~]N [ a~oo]N'; 

Q~o. = ~o.(co) rico; 
--oo 

Qf. = f.(rl) d~ 
--oo 

f,(r/) = exp - d(,")r/a a4 --~-., t/4 

P~')= Qf~ r/Uf.(r/) drl 

t/4f.(r/) dq 

822/80/1-2-27 
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~(2,,) = a (,,) a_ R N ~(B, ,  +,,  B,,) 
2 ~ Y  V 

at2"+')=fl  ~ ( B . + I , B , , ) + ( 2 n ) 2  Q -  ' co2~,(co) dco 
- - o o  

{ s [ 7  at4.) = (2rQ4 _ Q~.] c04cp.(co) &o + 3 Q-X c02cp.(co) dtn 
- - c o  - - t o  

The values of d(22), d ("+~) a~4 "), and ..(,,+l) z , -4 are linked by the recursion 
relations 

, , . / ( n +  I)__ sc [ r t (n )  ~ (n)~  
~"r  - - J l k t " 2  ' ~ 4  ] (18) 
n ( n +  I )  - -  g [ t t ( n )  ,,.,(n)~ 
t 4 4  - - J 2 1 , ~ ' 2  ' ~ 4  ! 

Their explicit form is presented in Appendix C and in Fig. 6. 
It was shown in refs. 7, 8, and 23 that for 0 ~< k ~< B there exist two 

main phase-space regions, in which the solutions of the recursion relations 
(18) and (C1) possess fixed points of different types. These two regions 
correspond to different fluctuation regimes. The first one holds in the 
vicinity of the critical point and was named the critical regime. It describes 
the short-wave fluctuations and corresponds to integration over variables 
P k with B,, < [k[ ~< B. For a sequence of block Hamiltonians {dr2 "), a~4 ")} the 
renormalization group symmetry holds and the fLxed point is of saddle 
type. 

The second regime describes the long-wave density fluctuations and 
holds for all Pk, [k[ ~ < B q .  In the case T >  To, that is, above the critical 
temperature, it was called the limiting Gaussian regime (LGR) and at 
T <  T c the inverse Gaussian regime (IGR). The recursion relations at both 
T >  Tc and T <  Tc possess an unstable node type of fixed point. The 
measure density under the integral in (17) approaches a Gaussian one with 
a nonanalytical dependence of dispersion on the temperature. 

Fluctuations with k = 0 should be considered separately, because Po is 
a macroscopic variable and its average value is related to the order 
parameter of the system. 

More detailed consideration of all these processes will be given below. 
The investigation of the asymptotic behavior of dr2")(0) and a~4 ") at 

n + m was performed in refs. 7 and 8. By the use of the transformation 

r .  = d ~")(0) s 2" 

U n = a(4n)s 4n 

(19) 
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Eqs. (C1) were reduced to the form 

r .+ ,  = s2(rn q- q) N(z c")) - s2q 

u.+l su.E(z  (m) 

where 

(20) 

N z (n) ~ / ~ ( n )  1/2 u(r ~-~) 

( ) \ z ~ . , ]  U(z ~.~) 

E(z (")) = U2(~ (')) + ~(") U(((")) - 
U2(z ~"~) + ~z("~U(z ("~) _ 

3(I - s  -5) 
q = ~(o) ;  # 

5(1 - s  -3) 

Equations (20) have the fixed-point type partial solution r ,  = r*, u, = u*, 
and relations (19) acquire the properties of a cyclic semigroup. The sub- 
stitution (19) is equivalent to the scaling transformations k ' - -ks ,  P'k = p J s  
in Wilson's theory. (29) 

The pair of numbers (r, ,  u,) can be considered as coordinates of a 
point in a parametric space. During the subsequent layer-by-layer integra- 
tion we shall obtain a trajectory. The character of the trajectory depends 
on temperature. For the "]7 4" model there exists a unique temperature for 
which the trajectory reduces to a point: 

(r,, u,) ~ (r*, u*) n ~ o o ;  r*, u* > 0  

The (r*, u*) point is the fixed point of the above renormalization group 
transformation. 

In the vicinity of the critical point we can use linear approximations 
in (20), transforming them to the form 

r*) r*) r n + l -  = R  (21) 
\Un+ 1 U ~ l ln--U* 

where R is a linearized renormalization group transformation matrix. 
Expressions for elements of the matrix R are given in Appendix D. 

In ref. 7 a general solution of the linearized system (21) was found in 
the form 

R i 2  
r n = r* + CiEnl -k- C 2 E2 __RI~ 1 E~ 

(22) 
E I - -R  H 

u. = u* + C1 - -  E'~ + C2E~ 
Rl2 
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Table IV. Values of Some Coefficients of the 
Solution of the Recursion Relations 

for s=3 .58  

E I E 2 f /2 Rt~ R~ tl R II 

8.235 0.377 0.6122 0.8894 3.837 1.174 0.6123 7.613 

where E I, E 2 are the eigenvalues of the matrix R; E l > 1, E 2 <  1 (see 
Table IV); C1, C2 are functions depending on temperature, density, and 
potential of the interaction: 

[ --a2 N RllRj~-2- E 2 J ] R I I - E  2 . E l  _ E2 e l  = - / ~  v I~(0)1 - r* + ( a 4 -  u*) 

C 2 = [ - ( a 2 - f l N l f f ~ ( O ) l - r * )  EI - R'lR12 _ F a 4 _ u , ]  R I I - E  2 
- -  J 

The solutions (22) are valid in the vicinity of the critical point, including 
at the critical point itself. At the critical point the solutions r . ,  u,, at n --. oo 
tend to their fixed-point values: 

lira r,  = r*; lira u,, = u* 
n ~ o o  n ~ o o  

This is possible [see (22)] only if Cl = 0 and so it coincides with the Wilson 
definition. Thus, we obtain the definition of "the critical temperature line." 
One obtains its explicit form from the solution of the condition C](T, ~/) = 0: 

(N /V)  I~(0)1 
Tc(rl)  = 

kn  

2[ 1 - f-+ R~ - E2)] 
x 

a2 + {a~ + [ 4a .R~ n -- E2)] [ 1 - f +  R~ - E2)] } 

(23) 

Expression (23) corresponds to a curve on the (T, r/) plane and will be 
used further for the calculation of the critical temperature. However, to 
determine the critical point one more condition is necessary, which defines 
another curve in the (T, ~/) plane. The point of their intersection determines 
the critical point coordinates. Therefore, at T =  Tc the trajectory (r, ,  u,) 
ends in the saddle-type fixed point (r*, u*). 

At TO Tc for n <n~ the current point (r, ,  u,) stays in the vicinity of 
the fixed point, approaching it at n ~ n,. The limiting number n, of the 
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layer of the collective-variables phase space (CV PS) is a function of 
reduced temperature r = ( T -  T~)/T~. At n > n~ the current point (r, ,  u,) 
moves away from (r*, u*). A characteristic feature here is the sign of the 
coefficient d(2")(k) at the quadratic term in Pk" At T> T~, n<n~, the 
average value of d(2")(k) over the interval 0 ~<k-%< B~, is negative; however 
at n > n~ we have d(2~)(k) > 0 moving away from the fixed point (see Fig. 6). 

A similar situation obtains at T <  T~. Here n~ is determined as the 
number of the layer for which d (2~')(B,,~) = 0. According to (22), the equation 
for n~ is (8) 

__In r ( ul/2R~ '~ (In E1) -1 (24) 
- l n E ~  + ln  ( E I - R I I ) C l l J  n r =  

where 

~11 _ ( 1  +F+R~ - E 2 ) "  RO R~ 

E1 - E 2  ' Rll --E2 

As was shown in refs. 7 and 8, n~ characterizes the correlation-length 
critical exponent v: 

B - B , , = B - B s  . . . .  B(1--  Irl ") 

The parts of the trajectory corresponding to n < n, and n > n~ are related 
to different regimes of transformation of the coefficients at2 ") and at4 ") 
describing the transformation of the measure density in (17) during subse- 
quent integration. Namely, at n < n, we have 

Z{.)= [dt2")(0) ] 2 r 2 
- " ~ < 1  

a (4 " ) U n 

and at n > nr,  2 (n) "--* o0, n ~ ~ .  

At T--* Tc, where Tc is defined by (23), we have z ( " ~ z  *= 
(r*)2/u* = const and, therefore, as follows from (24), 

nr ----~ O0 

In this way, the trajectory infinitely approaches the fixed point. 
At n < n~, the measure density in the configurational integral describes 

the statistics of the system of correlated effective blocks and is essentially 
non-Gaussian. V~e call the corresponding interval (Bn,, B) the critical 
regime interval (CR). For n > n~, the coefficient d(2n~(k) is positive, and the 
distribution by Pk is close to Gaussian. The interval (0, B,,) is called the 
limiting Gaussian regime interval (LGR). In the case T <  T c, after devia- 
tion of the trajectory from the point (r*, u*) one has d~2~)(k)< 0 for n > n~. 
Interval (0, Bn,) at T <  Tc is called the inverse Gaussian regime interval 
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(IGR). For the Ising model the condition dt2")(k)<0 indicates the 
possibility for nonzero average momentum in the corresponding system of 
effective spin blocks. 

It will be shown further that in the considered problem such a condi- 
tion at q = ~/~ leads to a situation in which the coexistence of two values of 
the particle density is possible in the system. 

Performing in (17) the subsequent integrations over the layers of CV 
PS, we obtain each time a factor Q, before the integral. Q, is a partition 
function of the n th CV PS layer. By summing up the logarithms of Q,, we 
obtain the free energy of the system. 

We consider the contribution connected with the integral over Po as a 
separate term. 

A new point in this problem as compared to the case of the Ising 
model is the dependence of T~ and all coefficients on the density and 
chemical potential. The latter is equivalent to the insertion in the Ising 
model of a constant external field. 

4. EOUATION OF STATE AT T> T c 

Let us examine first the case T>  Tc; the value of T c is determined 
below. As was noted in the previous section, we distinguish in the CV space 
three fluctuational regions, which give different contributions to the parti- 
tion function. The last at T >  Tc can be written in form 

xexp ~ ' - N [  !1~3(0) +!lJ~2(0)~011(0)+ 9Jl4(0) ]'~ 
l_ [9~4(0)1 2~42(0) 81~4(0)I3J J 

, ~  1 0 9 ~  +Eot  x exp ~ - ~ I~( )1 - fl(FcR + FLoR) (25) 

where FCR is the free energy of the critical regime and corresponds to 
B,,<k<<.B; FEaR is the free energy of the limiting Gaussian regime, 
0 < k ~< B,,; and Eo is a contribution connected with P0, which we separate 
because this variable is a macroscopic one. 

Let us return to formula (13). Integration over all Pk in the critical 
regime interval, B,, < Ikl ~< B, can be performed by the same method as in 
the Ising model case, and therefore for FCR we will use a result from ref. 8, 

FcR= -UnknT {-n,s-3"~+ (1 - s-3"') [ 1.043 - 0.828(r* + q)(u*) -'/2 

l l n u , ] _ 0 . 8 2 8  C, ( I _ E I " ~ " ( 1  E I ~ - '  s )  (26) --~ ~ s3 j - -~ j  +ln  
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The remaining integral over Pk, 0 < Ik[ ~< B,,: is of the form 

f exp {/Z*po - 1  Y' d(2";)(k) PkP-k 
2 k, Ikl ~<B.~ 

} 4!N, ;  k,....,~}-" p k , . . . p a 6 k , + . . . + ~  (dp) A% (27) 

Ikz[ ~< Bn~ 

where n'~ = n~ + 1. 
The density measure in (27) has a nonanalytic dependence on tem- 

perature. This nonanalyticity is a result of the integration in the interval 
B. <~k <<.B. 

Because d~";)(O)=O, the interval O<k<~B.~ will be considered 
separately. Here 

d(2";.,)(k) > 0 

and the integrals over Pk, Ikl S0 ,  in (27) can be calculated using the 
Gaussian density measure: 

exp f -�89 E 
k 

0 < Ikl ~< B.~ 

[d("D(k) + A] PkP -k} 

where 

A -  a4 
4N(.;) ~, (PkP -k> 

k 
0 < Ikl ~< On'r 

is defined in a self-consistent way: 

0 In ~L = 1 
OA E 

k 
0 < Ikl ~< B.~ 

(PkP--k) (28) 

Let us represent A in the form 

A = / 10e(0)l s - 2 " ' ~  

Then from (28) we obtain the following self-consistency equation: 

= 3~.;[ 1 - (~)t/2 a rc tg(~) -  1/2] 



426 Yukhnovskii et  al. 

In (27) we integrate over all PA except P0 and find the corresponding 

p(o 1) z - -  
2A 

For Eo we obtain 

E o  __ E o ( P ( o l ) )  _ _ / . / , p  (1) _ A(p(o,))2 _ _ _  

and again find the result (30). 

.7';) (p~,)),~~*~ 
4!N,,; ~4-A- (34) 

(33) 

contribution to the free energy: 

FLGR = N s k s  Ts--3n;{ In I~(0)l + A' - n', In s - �89 + 

+ ~3/2 arctg(~) -1/2 _ �89 In ~r} (29) 

Here A'  = As  2'4. 
For the remaining integral over Po one has 

a(4";) p~}  dpo exp(Eo) = f exp { /x*po-AP~-4!  N.;  

f r r \ l l  2 f /x*2\/  a(4,,;) ) 
"~t~) expt~Jt,1 4!N.,(p4)+ ..._ (30) 

This result can also be obtained in another way. Let us determine the point 
of the absolute maximum of the expression in the exponent of the integral 
(30). This point satisfies the condition 

a~4 ";) _3 0 I z * - 2 A p o - ~  Po = (31) 

The solution of this equation is an important characteristic of the system. 
Here A > 0  and a(4";) > 0. Hence, the discriminant of Eq. (31) 

Q = (VI3)  3 + ( W I 2 )  2 

- . ~ , , )  _611*N,,;/a(a,,;) v = 12AN, ; /a  4 ' ; w = 

is always positive. Equation (31) has one real and two imaginary roots. 
The real one is 

p~o') = ( - WI2 + Qm)l13 + ( _ WI2 - 0 1 / 2 )  113 (32) 

At the surface #x*=0 ( W = 0 )  the root (32) is equal to zero. In the 
neighborhood of the surface/x* = w = 0 it is close to the value 
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Therefore we obtain an explicit expression for the grand partition 
function at T >  Tc [see (25), (26), (29), (34)]. 

Let us now calculate the chemical potential and, after substitution of 
the result into (25), obtain the equation of state. We proceed from the 
equation 

a l n S  
- ( N >  = N  (35) 

0It 

o r  

where 

From (25) we obtain 

N1/2(9~1  Jr p(o 1)) = N ( 3 6 )  

p~o ') = A (37) 

( A=NI/E_~I=N1/2 ~3(0) 9j12(0)+ (38) 
1~/~4(0)1 3 l ~ 4 ( 0 ) l /  

A is an important quantity in the region of the critical behavior of the 
system. In the present approach it depends only on density, because we use 
a system of hard spheres as a reference system, and neglect all modes Pk, 
Ikl > B. After substitution of the root p =p(o ') into (33), we obtain 

I t* ,~, 2AA (39) 

Because Q > 0, the chemical potential It* is a continuous function of 
A in the whole region T > To. 

For the equation of state at T >  Tc we obtain 

P - Po - 9Jl3(0) [ 1 + 9912(0) 9Yl3(0) 
~aT =ln- 'c+lnZ(~2'~4)-Nl~4(O)l  [ 2 1~4(0)1 

] 
+ 8~42(0)j - ~ N I~(0)1 -/~(FcR + FLGR) + N ,/2[ la(0) + 2A ] A 

- -  ~ A  2 - -  ~ A  4 (40) 

where 

1 a(4 ";) 
~ =5  (1~(0)1 +2A); !R=4! N,; 

Po is the pressure of the RS defined by Eq. (2). 
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The terms FOR and FLCR determine the critical exponents and will be 
considered below. The isotherms of pressure calculated with (40) are 
plotted in Fig. 5. 

5. THE CRITICAL POINT 

Let us return to the equation (23) for the critical temperature. The 
coefficients a2, a4 on the right-hand side are certain functions of density. 
However, as was proved by numerical calculations, the right-hand side of 
(23) in a wide range of concentrations is weakly dependent on density, and 
determines a surface almost parallel to the (/~, r/) plane in (/1, r/, T) space 
(see Fig. 3). To find the critical point coordinates, one needs two more 
equations. The first one is the equation (23) for the critical temperature. 
The second equation is determined by the condi t ion /z*= 0. Indeed, with 
/1"= 0 the problem is reduced to the case of the Ising model in zero field 
and describes the second-order phase transition. Therefore, the conditions 
g * =  0 and C~ = 0 from (22) determine the critical point coordinates. The 
condit ion/~*= 0 leads to the relation 

I -t* =-N1/2h - a l  = 0  (41) 

o r  

1 ~ 0t(k) 93/3(0) 
/~(/~ -/~o) + ~ 1~4(0)1 

- -  + Io~(0)1 (1 - A N  -1/2) (42) 

To find the critical density, one needs to calculate the chemical potential. 
This was done in the previous section, where for/z* we obtained 

/~* ~ 2AA 

It follows that at the critical point the following condition holds from 
the above relation and previous considerations 

A = 0  (43) 

The intersection of curves determined by (23) and (43) determines the 
critical point coordinates (see Fig. 3). 

As follows from (38), the condition A = 0 coincides with the condition 
~1/3(0) = 0. As the expressions for the cumulants 93/,,(0) are known, and we 
have neglected their renormalization due to integration over the short-wave 
fluctuations Pk ([k[ > B), the left-hand side of (38) depends only on density, 
and for the critical density the calculation yields 

q~ = O. 130443 
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l a = a J J J l i l l a l l a l i = i l  

1.5 I 1.0 
0.5 
0.0 

0.11 

Fig. 3. 

a) 

.b) ,~ 
I t l l l n i | l l | ~ = l l J l l  

0.12  0 .13  0.14- 0 .15  

Determination of coordinates of the critical point. Curves (a) and (b) correspond to 
Eqs. (23) and (43), respectively. 

Note that the same value for the critical density was obtained in ref. 31 
with the help of a revised van der Waals equation for hard spheres. 

A comparison of the hard-sphere diameter calculated from the 
expression 

7~ r/r =~pcpcr3p 

where the experimental value of density at the critical point (at 
~/cP =0.13044) was substituted instead of Pcp, with the effective diameter 
of a molecule a,r determined from the structure factor, namely, using the 

.position of its first peak, was performed in ref. 32. The author points out 
that for the examined molecular liquids the relation 

O'Cp ~ O'sf 

holds. 
So we have a value of the critical density that is true for all fluids for 

which the structure and intersection at small distances can be described by 
means of hard spheres. 

Next, let us calculate the critical temperature of the system, employing 
the expression (23). 

Taking for Ar the same choice of the potential that used in calculating 
the renormalization of cumulants by formula (6) of Section 1, we find from 
(23) for the critical temperature 

kB Tc/e ,,~ 1.31 

Summarizing, let us note that the definition of the critical point 
naturally emerges here from physical considerations. In particular, the 
expression (23) for the critical temperature reflects the presence of a 
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renormalization-group type symmetry at the critical point for a system of 
effective blocks, which coincides in essence with the definition of critical 
temperature in Wilson's theory. 

At the (To, r/c) point the chemical potential/z* is equal to zero, and all 
terms of odd powers in Pk in the exponent of the integrand in ~L are 
absent. They do not arise in the process of layer-by-layer integration as 
well. Therefore, at the critical point we have a phase transition of the 
second order. 

If one takes into account the contribution of the short-wave density 
fluctuations Pk, Ikl >B,  the set of equations (23), (43) becomes more 
complicated, and the coordinates of the critical point will change, but we 
do not suppose that this change will be significant. 

6. THE FREE ENERGY AND EQUATION OF STATE AT T <  Tc 

In the present paper we consider a narrow interval of temperatures 
very close to To. In the same way as in the T >  Tc case, we start from 
an integration over variables Pk belonging to the layer of PS with 
B., < IKI ~< B, where B., defines the boundary of the critical regime region. 
The same recursion relations for a(2 "), a(4 ") as in the T >  Tc case are valid. 

As T ~  To, the current point of the trajectory (r,,, u.) will be close to 
the fixed point (r*, u*) in the course of the finite number of layer-by-layer 
integrations. The curve d(2")(k) shifts during the process of integration, but 
its upper end d(2")(B.) at the right boundary of the interval [0, B,,], 
B. =Bs-",  moves downward faster than the lower one d(2")(0) at the left 
boundary moves upward (see Fig. 6). That is why after a certain number 
of steps of integration n = n(z) = n. we have 

d~2"')(k) < 0, O<.k<~B,,, 

This is the definition of the point n~. 
We call the interval (B,,,, BJ the critical regime interval at T <  To. 
Using (22), we obtain for n~ 

lnl~l ln{[lr*+lo~(O)ll]/C,} 
n ~  = - - -  + ( 4 4 )  

In E1 In El 

Integration over Pk, B,. < Ikl ~< B, yields the contribution exp(--flFc•) 
to the thermodynamic potential. As in the case of the Ising model, the 
integration over Pk, 0 ~< [kl ~<B,,, is performed with the Gaussian density 
measure, with the prior shift 

Pk = Pk "~ (NB)1/2 ~k O. 
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by a ensuring the convergence of Gaussian integrals with respect to Pk- 
The result of the integration is written below as exp(--flFmR). Therefore, 
after integration over all p~ except Po we have for ~t. 

f 
o p  

~L(r/, p, T) = Z(9"J12, ~I~4) exp[--fl(FcR+FmR)] exp[E(po)] dp645) 
- - c O  

It is suitable to use in the calculations the expressions for FCR and 
FmR from ref. 7: 

F c R + F m R = N B k B T [ (  1 - s r  I~13~) ~, + ( l ~ l .  ~3~-,  ir13~) ~2 

+~r ir13, (~3 + ~4)] (46) 

Here ~r c~, ~2, (/03, (~4 are known functions ~7) which are weakly 
dependent on density in the vicinity of the critical point�9 

The main contribution to the partition function at T < T~ is connected 
with the last integral over the macroscopic variable po=P'o Nl/2. Having 
integrated over all Pk, Ikl ~0,  for the exponent in (45) we obtain ~7) 

E(po) -- E(p'oN ~/2) = N(Iu*N -~/2po + g$p~ - ~p4) (47) 

(we omit the prime on Po), where 

~ = ~ o  Iv12~; N~ Ir"'l 1 41r,.I 2 ~ ( X )  Ir*+10c(0)ll./ 

r,, =r* +CIET'-C2RE~'; u. =u* +CxR'E]'+C2E~" 

X -  arctg x ( (~ X 1]2 7.C2 
�9 - -  - z , , ;  ; ~ = 2 ~ -  I I~(0)1  ~ ( X ) = 3  x= . x = g  21r,.Is J 

C1 "~, u,~. In s (48) 
~ = ~ o  I~1"; ~~ l r * ~ ( 0 ) l l J  ~ ( '  V=lng,  

The function -ksTE(po)  is an analog of the Landau free energy. An 
essential difference consists is that, first, we know the explicit expressions 
for p*, &, f9, and, ~econd, the dependence of t~ and fr on ~ is nonanalytic, 
namely, ~ ~ I~12", ~r ~ t~1". At z ~  0 both t~ and f# tend to zero, but & does 
so faster, so that the integral over Po exists. 

The integral 

e0 = f exp{E(po)} dpo (49) 
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will be calculated by the steepest descent method. The equation for the 
extremum 

po 3 + ~ p o  + ~r = 0 (50) 

should be solved, where 

3e'= - - - -  ~r162 
2if '  4fiN 1/2 

Then the point of the absolute maximum of E(po) is to be found. The 
discriminant 

a = (-'r162 2 + (3v'/3) 3 (51) 

may be positive, equal to zero, or negative. One has to examine all three 
cases. 

Note that the nonanalytical dependence of ~ and ff on temperature is 
a result of integration over the interval of the critical regime. 

The surface Q = 0 separates two thermodynamic regions in (/~, r/, T) 
space: an external one, which is the region of single-phase states, where 
Q >  0, and an inner region (Q < 0), which is the phase transition region. 
The surface Q = 0 represents the coexistence boundary. 

Let us now write the equation for the chemical potential/l .  Suppose 
that the point Po = P~o l) is a point of the absolute maximum for E(po). Then 
E'(po = p ( J ) ) = 0  and E"(p o =p(o 1)) < O. Using the bridgewall method, we 
obtain 

/ 2n ,~ 1/2 
St(Ix, t/, T ) =  Z(~I/2, ~4) exp[ --fl(FcR + F, OR)+ E(p~o')) ] \lE,,(p~o,))l) 

Because N is a large number, from 0 In Z/Op = N we again obtain 

P~o') = AIN ~12 (52) 

The quantity p(o I) is proportional to the order parameter. Therefore, 
we will call A the order parameter, too. 

Our aim is to find the relation between/z* and A. Let us first describe 
the coexistence boundary. When Q = 0, Eq. (50) has three real roots. Two 
of them coincide 

1 ( / 2 " )  '/3 
pCo2)=pr ~ (53/ 
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The only root  providing the absolute m a x i m u m  of  E(po) is 

/ tl* \1/3 
,,~1) = / ~__~__~ (54) e'o \ ~ N 1 / 2 j  

Indeed, 

E"(pr l)) = - 6 N ~  < 0 

E"(p~o 2)) = E" (p  Co 3)) = 0  

E"(p~o 2)) = 4 N ( 6 ~ ) 1 / 2  

F rom (52) and (54), we obtain for Q = 0 (at the coexistence boundary)  

/1" = fgA 3 (55) 

Along the curve determined by the condition 

Q = ( - ~//'/2) 2 + (~/'/3) 3 = 0 

the following relation is valid: 

H * =  +_m [z[ (51z)v (56) 

Here 
4 (~3~  1/2 

m - 3(6)1/2 \~ -oJ  

Let us consider the case Q > 0. Equat ion (50) has one real root  

p(o l) = ( - ~ r  + Q ]/2)1/3 + ( _ ~ r  _ Q1/2)1/3 ( 5 7 )  

and two complex roots. 
A positive sign of the discriminant is provided by 

( -~ / / ' /2 )2  > -- (Y/ ' /3)  3. Then we can write for Q 

Q1/2= i./r (1 + b / 2 +  . . .  ) 

where b = (~e/3)3/(~C'/2)z; [b[ < 1. 
The only real root  p~01), (57), is equal to 

the condition 
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Together with Eq. (52) this yields an isotherm for the chemical poten- 
tial/x* in the Q > 0  region: 

(,. 
4-7-ff ; 

The signs of/x* and zl coincide. 
Equation (58) transforms into (55) at Ibl--> 1 (which corresponds to 

Q--> 0). 
Let us now consider the internal region Q < 0. In this case Eq. (50) has 

three real roots p~o '), p~o 2), p~o3): 

f l ~ l ' k  llz +2• 
P~~ j c~ 3 (59) 

f l ~ l ' k  ~lz cp pT)=2 t - -~ - -  ) cos +4zc3 

where ~p = arccos t, t =/~*/[8ff( -~f/3)3/2]. 
Near the coexistence boundary ( Q = 0 )  the value ]cos tl is close to 

unity. Setting cos t =  - 1  + 6  for/z* < 0  and cos t =  1 - 6  for/z* >0,  one 
can show that for negative/~* it is necessary to take the root p~o 2~ and for 
positive/z* the r o o t  p(01). (19) 

Only these roots should be taken into account, as they provide 
absolute maxima of E(po). The other ones should be dropped. 

Let us now evaluate the parameter zJ, 

A = - N  112 ~913(0) [!Dl2(O)-t YJl~(O).] 
1 4(0)1 L 3 I ,,(O)lJ 

One can write near the critical point 

0,6 (~l - ~#c) = F(q - ~<) (60) 

The value q=r/r corresponds to A = A c = 0  and 9~3(0)=0. The 
dependence of ~IJ/3(0) on density is given in Table II. ~0/3(0 ) is a decreasing 
function oft/. Then 

_r'= 0~3(0)  ~(~176 ~2(0)  > 0  
Or/ 9~4(0) ~ o ) = o  
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Fig. 4. 

Q>O 

p(oll 

pb) o 

Schematic dependence of the chemical potential  p*  on / I .  

Thus, the isotherm of/z* can be expressed as a function of r / - r / ,  or 
A. The dependence of/z* on A is plotted schematically in Fig. 4. 

For the equation of state we have (see Fig. 5) 

P -  Po 
= I n  ~(l)-lnZ(~t~2,~TJl4)--fl(FcR+Fmrt)+lnEo (61) 

knT 

Here exp(Eo)= j exp[E(p0)] dpo is calculated by the bridgewall method, 
taking into account the above analysis of the absolute extremum of the 
function E(po). 

I)o__ 3 0.36 
r 

0.34 

0.32 

0.30 
0.1295 

1 t 2  
~ q 3  

1' 2 '  

r~ 
. . . . . . . . .  , . . . . . . . .  , . . . . . . . . .  J 

0.1300 0.1305 0. t310 

Fig. 5. Equat ion  of state in the vicinity of the critical point. (1, 2) r = 0 . 0 0 5 ,  0.001; (1', 2') 
r = 0.005, -0 .001 ;  (3) �9 = 0 (the critical isotherm).  The  vertical line marks  the critical density 
q =0.13044.  

822/80/I-2-28 
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(n) 

/ I  / I !  k' 

(n~ d~(k) 

(k) u) )/4 (k) A Ski 

S b) 

Fig. 6. Evolution of the coefficient d~2")(k) in the course of layer-by-layer integration. 
(a) T>  T c. (b) T <  To. [See Eq. (18); Section 6 (p. 430); and Appendix C.] 

In the present paper we have considered the foundations of the liquid- 
gas phase transition theory. For a more complete description of processes 
in the vicinity of the critical point it is necessary to perform calculations of 
thermodynamic functions. These will be performed elsewhere. 

In addition, all calculations in this paper were in the quartic basic den- 
sity measure. That is why at the critical point, where A = 0, the critical 
exponents are the same as for the Ising model. The law of rectilinear 
diameters Pc = �89 + Pc) will also hold. To describe the effects connected 
with asymmetry of the boundary, one should compute the partition func- 
tion using the sixfold density measure. However, the general approach to 
the computation will be the same as that in the present paper. 

APPENDIX A. CONTRIBUTION OF THE SHORT-WAVE 
FLUCTUATIONS IN THE GRAND PARTITION 
FUNCTION 

Consider the integration over the "short-wave" variables (ok, Pk, 
I kl > B. We have to calculate 
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(2n) 2 
~ = o = f e x p  {_1_ ~ 0c(k) pkp_k 2' Y" ~J~2(k) O)kOg-k} 

2 k, Ikl>S k, Ikl>S 

x l + D 2 + ~ D 2 +  .. .  exp i27r E 60kPk 1--[ dcokdPk  
k, Ikl > B  k, I k l > O  

(A1) 

where 

D 2 =  ~ (--i2zQ" (A2) m! ~" 9 J ~ m ( k l  . . . . .  km)  O ) k l ' ' ' ( 2 ' ) k m  
m >/3 kl ,...,kin 

The transformation 

D 2 ~ / 5 2  = ~'. ~ (--1)m' ( - i2r r )m-m'  E 9Jl , , (k~ , . . . , k , , )  
m~>3 m l = l  m !  kl,...,kml, lki[ > B 

kml + I,...,km, ]kll ~ B  
~ m  

X O p k . . . O p k , q  O.)k,,,l+l �9 �9 �9 ~k,,, (A3) 

and integration over co k, ,o k in (A1) gives for ~=o (with the accuracy up to 
the fourth virial coefficient) 

E G -~ l-I [ 1 + oc(k) ~2(k) ] -1 /2  exp [ 2V e g(r'2)- 1 - g(r12) 
k, [ k l > B  

. N ( N -  1 )(N-- 2) 
g2(212) F2(r  12) dr,2 + ~! ~ f {[ e g(r'2) - 1 - g ( r  12)'] 

x [ e  gcn3) -  1 - g ( r 2 3 ) ] [ e  g(r3 ' ) -  1 - g(r31) ] + 3g(r12) 

x [ e  g~23)-  1 - g ( r 2 3 ] [ e  g(~3')- 1 - g(r31)] } F3(r l2 ,  r13) dr12 drl3 

+ N ( N - -  1 )(N-- 2)(N-- 3) 
f {2g(rx2 ) g(r34)[e  g(r4`)- 1 -- g(r41 )] 

4! V 3 

x [e gt'23)- 1 -- g(r23)] + 4g(ra2)[e  gtn3) -- 1 -- g(r23)] 

• [ e  g ( r u ) -  1 - g ( r 3 4 ) ] [ e  g ( r40 -  l - g(r41)] + [ e  g(r l2)-  1 - g(r12)] 

x [ e g(r23) - 1 - g(r23 ) ] [ e gtr~) __ 1 --  g(r34 ) ] [ e gtr41 ) -- 1 -- g( r41 ) ] } 

xF4(r12 , r13 , r14 ) x dr12 dr13 dr14+ -.. (A4) 
J 
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Hence g(r) is the screened potential 

g(ri/) - g(lri-- r/l) --"~ -V k, I 1  ~> B g(k) e--ik(ri--rJ); 

~(k) 
g(k) - 

1 + ~t(k) 9J/2(k ) 

In the whole interval Ik[ > B the following condition holds: 

1 + ct(k) 9Y/2(k ) > 0 

The cumulant ~J/2(k) is the RS structure factor: 

~ J l d k ) - - l + ~  [ F 2 ( r ) - l ] e - ' ~ d r  

F2(r) is the RS pair distribution function. 
Expression (A4) can be calculated with the appropriate approximation 

for the distribution functions (for example, with the known Kirkwood 
approximation). 

APPENDIX  B. THE REFERENCE SYSTEM S T R U C T U R E  
FUNCTIONS WITH REDUCED DEPENDENCE 
ON W A V E  VECTOR 

In this appendix we calculate the coefficients ~0/,,(k~ ,..., k,,) of the grand 
partition function (4). 

The cumulants ~ , ( k l  ..... k,) have been expressed in terms of the RS 
correlation functions; for example, 

9J~2(k 1 , k2) = ~(k 1 + k2) [ 1 q-fl2(kl)] 

~0~3(k I , k2, ks) -= O(k 1 + k 2 + ks) [ 1 + 3/z2(kl) +f13(k2, ks)] 

~ 4 ( k l ,  k2, k 3, k4) = ~(k 1 4- k 2 q- k 3 q- k4)[ 1 + 4~t 2(k l) + 3/t2(kl d- k2) 

+ 6/-t3(k2, k3 + k4) q-/z4(k2, k3, k4)] 

where/~,(k2,..., k,,) is the Fourier transform of the n-particle RS correlation 
function: 

lz2(k)=N f [F2(r)-  l] e - ~  dr 

N2 f e--ik2r12- ik3r13 /'t 3(k2' k3) = 7 

X [F3(rl2 , r13 ) -- 3F2(r12 ) 4- 2] drl2 drl3 
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N 3 s 

#4(k2, k3, k4) = - ~  J 

where 

e - t ~ 2 r 1 2 -  ik3 r13 - -  ik4 r14 

x [F4(r12, rl3, r]4) --4F3(r12, r13) 

-- 3F2(rl2) F2(r13) + 12F2(r12) - 6] drl2 dr13 drl4 

Fs( r l2 . . . . .  r l~) _ ~ exp(--fl~k) dr , .~+, . . ,  dr,/v 
V s - I  ~ exp(--fl~k) (dr) N 
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..... s,l__iu, 
~ Z  Z s "rs + 

where z is the fugacity; u(1, 2 ..... s) =pSlzs(1, 2 ..... s), with p = N / V ;  and 
/zs(1, 2 ..... s) are correlation functions, connected to their long-wave values 
p~(0) by the relation 

/~s(0) = pS- ~ f P(1, 2 ..... s) d2 d3 . . .  ds 

Together with (B1), it is necessary to use the thermodynamic relations 

O In p ~ ['Op'~ 

Applying Fourier transformation to both sides of (B1), we obtain a 
sequence of equations for the Fourier transforms of correlation functions: 

8 p" 
Oz ~/1 , (k l ,  k2,..., k , _ l ,  k, = --kl - k 2  . . . . .  k ,_ l )  

pS+l 
= z ~ + l p ~ + ~ ( k l , k 2  ..... k ~ - l ,  - k l - k 2  . . . . .  k ,_ i ,  0) (B2) 

Setting s = 1 in (B2), we obtain the well-known relation for the structure 
factor and compressibility: 

93/2(0)=1 + P l z 2 ( O ) = k s T ( ~ p p ) r  

is the s-particle RS distribution function. 
To calculate the cumulants ~01,(kl ..... k,) in the case when some 

arguments are equal to zero, we use a sequence of equations for the 
correlation functions: 
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In the general case, we obtain for the Fourier transform of the n-particle 
correlation function from (B2) 

Iz.(kz, k2,..., k n - 2 ,  - - k l  - k 2  . . . . .  kn_2 ,  O) 

= / t . _  i(kt, k2 ..... k, ,_2 ,  --kl - k2 . . . . .  k. _ _ 2 ) [ ~ 2 ( 0 )  - -  n + 1 ] 

0 3 "4- r/9"J~2( ) ~-'-/-t,,- l(kl, k2 ..... k ._2,  - k ,  - k 2  . . . . .  k . -2 )  
o7 

In this way, we obtain for 9J/3(k, - k ,  O) and 9J~4(k , - k ,  O, O) 

a 9J~2(k , - k ) ]  
N-l/2~jY~a(k , - k ,  O) =~J~2(O) ~O~2(k , - k )  +r/  &/ 

N~lJ~4(k , - k ,  O, O) = ~ 2 ( 0 )  I ~O~2(k' - k )  9)/2(0) + 3r/~]0~2(0 ) 
(9 9J~2(k , - k )  

+ r/~J~2( - k ,  k) ~ +/,]2 t~tJ~2(O) O~Jl2(k, - k )  
3r/ &/ 

+ r/29J12(O) 632~0~2(k, 
32r / -  k)] 

An analogous result for ~ff/3(k, - k ,  0) was obtained in ref. 33. Therefore, to 
calculate 9J/3(k , - k ,  0) and 93/4(k,-k,  0, 0) one needs to have only the 
hard-sphere structure factor 9~2(k ). 

The cumulants 9J~.(kl ..... k.) for ki --* 0 also can be expressed in terms 
of the fluctuations of the number of particles: 

~2(0)  = ( ( N -  (N))2)/(N); 93/3(0, 0, 0) = ( ( N - -  (N))3)/(N) 

~f~4(0, 0, 0, 0) = [- ( (N--  ( N ) ) 4 )  __ 3( ( N -  ( N ) ) 2 ) 2 ] / ( N )  

One can find the last values from the thermodynamics, using the 
relation between the long-range limit of the structure factor and the 
compressibility. 

APPENDIX C. AN EXPLICIT FORM OF THE RECURSlON 
RELATIONS (18) 

Analysis of the relations (18) allows us to describe the critical behavior 
of the system, that is, to calculate critical exponents and obtain explicit 
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expressions for thermodynamic functions. It is suitable to write down the 
recursion relations (18) in the explicit form 

td(z"+l)(k)=N fl[ ~(B,,, B,,+l)-~(k) ] + (p~)) if2 

(.) (.) 2 ..(.+,)_ 9 [ rr2tr(.)~+ 3 ~ U(~ ) - j ]  
L "4 - & L ~ ' ~  ' 

where 

U(~ (n)) 
(C1) 

~(.) = { L ~  I/2 
\ p ( . ) j  P (2"); U ( r  _ 

U(1,~ ~")) 
U(O, r 

with 

2 . e -r'(n)2/4 foo x21e-~(')xZ-x4/2 dx 
U(I, ~("))=F(/ + 1/2) Jo 

the parabolic cylinder function, and 

= U ( z ( " ) ) ;  

9 +2z(.) U z(.) _2 Pc4"'=-~[ U2(z~"') 3 ( ) 3] 

z(") = ( + ) X/2 d(2")( B.B.  + l ); 

U(z(.) ) U(1, z (")) 
U(O, z ('~) 

d(n)(Bn, Bn+ ,) = a(n) + N fl~(Bn, Bn+ 1) 

2 
U( l, z (")) F(l + 1/2) 

e-Z(")2/4 f o  x2le-Z(nbd-x4/2 dx 

The feature of Eqs. (C1) is that one performs the transition from d~ "), a(4 ") 
to d~ "+ 1), -4"("+ i) in two steps, using values P~"), P~") which characterize the 
density of the distribution by the effective field ~0 k. 
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APPENDIX D. ELEMENTS OF THE LINEARIZED 
RENORMALIZATION GROUP 
T R A N S F O R M A T I O N  MATRIX  

The main difference as compared  with refs. 15, 16, and 29 consists in 
that  we have explicit expressions for the matr ix  elements, (7) 

ON(z*) ] R,, = \(Or"+Or,, ''~*/= s2 U(z'") + (z*)  '/~ O(z,) , ,~ j 

=(Or,,+,)*=  2z* ON(z*) Ro2 
RI2 \ Or n /I - - (3u*) l /2  0 ( z* ) l / 2=(u* ) l / 2  

= (0..+,~* (3u*) '/z ON(z*) 
R21 \ Orn ,] =S  ~ O(z,)l/" ~ = ( t l * ) l / 2  R~  I 

R 2 2 = \  OU,, / 0 ( z * ) l / 2 J  

where r*, u* are the fixed-point coordinates: 

,'* = - I=c (o ) l  7; 
9 . s-[N(z ) - - 1 ]  _ f -  q 
s"N(z*)- 1 

3(1 - -S -2 )  2 
u* = I~c(0)l if; f f-4z*rN( z * ) k  - s - 2 ]  t72 

N I 
�9 ~(o) - -  ,~(o); 

Vks T~ N(z*) = \z*J U(z*) 

E(z*) = U2((*) + 2(* U((*) - ~ 
U2(Z*)  .~ 2.*Tit,.;.* ~ -- 2 

3 ~ ~ ' , -  ] 3 

(* and z* are the fixed-point values of the parameters  ((") and z ~'). 
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